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My research interests are in Software Engineering, with a focus on Software Testing and its appli-
cation in making Machine Learning-based systems more reliable. Machine Learning (ML) is rapidly
revolutionizing the development of many modern-day systems. However, ensuring the reliability of ML-
based systems is challenging due to 1) the presence of non-determinism in internal (e.g., stochastic
algorithms) and external (e.g., execution environment) components and 2) the lack of accuracy specifica-
tions. Traditional software testing techniques, while widely used to improve software reliability, cannot
tackle these challenges since they mostly assume deterministic behavior and lack domain knowledge.

The goal of my research is to develop novel testing techniques and tools to make ML-
based systems more reliable. I achieve this goal by 1) automatically detecting bugs and debugging
failures in ML libraries that drive such systems [FSE18, FSE19, FASE22, FALCON*], and 2) detect-
ing bugs more effectively and efficiently by improving the quality of developer-written tests in ML
libraries [ISSTA20, FSE21, ISSTA21, ICST22, ICSE23]. My research exploits the fundamental principle
that we can systematically reason about non-determinism and accuracy using rigorous statistical and
probabilistic reasoning. I develop novel static and dynamic analyses for testing ML-based systems that
build on this principle. I implement these analyses into scalable tools that allow developers to efficiently
navigate the inherent trade-off space between the quality and efficiency of their tests.

To fulfill my research goal, I developed the first generation of testing tools for ML Libraries.
My tools have uncovered bugs and improved the quality of tests in numerous popular open-source ML
libraries (e.g., PyTorch and TensorFlow), including those used in large-scale software ecosystems, such
as DeepMind, Google, Meta, Microsoft, and Uber. My significant contributions include:

1. The first approaches for detecting bugs [FSE18] and debugging failures [FSE19, FASE22] in Proba-
bilistic Programming Systems — a form of Bayesian Machine Learning. My approaches detected more
than 50 previously unknown bugs in Probabilistic Programming Systems and enabled faster
debugging of failures.

2. The first approaches for detecting [ISSTA20] and fixing [FSE21] flaky tests — tests that randomly fail
for the same code version — caused by the randomness of stochastic training/inference algorithms used
in ML libraries, and the first technique [ISSTA21] to significantly speed-up tests in ML libraries. My
tools have already improved the effectiveness and efficiency of over 200 tests in over 60
open-source ML libraries.

I also received the Facebook PhD Fellowship and the 3M Foundation Fellowship for my research.

My short-term goal is to develop high-quality testing and debugging techniques for ML-based systems
that can be seamlessly integrated into daily developer workflow and enable developers to write more ef-
fective and efficient tests. My long-term goal is to redefine the testing of systems with non-deterministic
computations, like ML-based systems, by identifying unique domain-specific insights and exploiting them
using foundational software engineering, program analysis, statistics, and machine learning techniques.

I plan to extend my approaches to testing in other domains characterized by non-deterministic compu-

tations, including deep probabilistic programming and hybrid systems driven by ML-based components

(e.g., autonomous cars and robots). My experience and insights from handling non-determinism can aid

in overcoming the challenges in these emerging domains.

1 Testing Probabilistic Programming Systems

Probabilistic Programming (PP) is an emerging programming paradigm that allows users to easily express
various statistical models as simple high-level programs while hiding the complex details of inference.
A PP system implements a probabilistic programming language and one or more inference algorithms,
such as Markov Chain Monte Carlo (MCMC) and Variational Inference. PP has shown great promise
in real-world applications (e.g., financial forecasting, social network recommendations, and COVID-19
modeling) and attracted interest from industry (e.g., Google, Meta, Microsoft, and Uber) and scientific
communities. However, PP is a young research area, and there is a need for tools that can improve
the reliability and usability of PP systems to increase PP’s adoption. Hence, I developed the first
testing and debugging tools for PP systems. My work in this direction focuses on tackling three
main challenges: 1) automatically detecting bugs in PP systems while accounting for the approximate
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and probabilistic nature of inference, 2) efficiently reducing fault-revealing probabilistic programs (inputs
for PP system) to make it easier for developers to debug failures in PP systems, and 3) helping users
efficiently debug programming errors in probabilistic programs.

Detecting Bugs in Probabilistic Programming Systems. A PP system is complex, typically
consisting of multiple components such as language frontends, a compiler, inference algorithms, and
numerical libraries. Additionally, the approximate and probabilistic nature of the inference algorithms
makes it hard to reason about correctness in such systems. To tackle these challenges, I developed
ProbFuzz [FSE18] — the first technique that laid the foundation for systematically testing
PP systems. ProbFuzz uses program analysis and domain-specific information about probability dis-
tributions to generate semantically valid probabilistic programs (inputs). Such programs can exercise
complex logic in PP systems’ various components, and expose hard-to-detect bugs. Because inference
algorithms do not come with accuracy specifications, ProbFuzz compares the outputs (posterior distribu-
tions of model parameters) from multiple PP systems using statistical tests to reason about correctness.
If the output of a PP system differs significantly from others, there is a potential accuracy or numerical
bug. Using ProbFuzz, I detected and fixed over 50 bugs in three popular PP systems (Stan,
Edward, and Pyro) and their underlying frameworks (PyTorch and TensorFlow).

Program Reduction for Debugging Probabilistic Programming Systems. PP systems make
it easier to write probabilistic programs, but failures in PP systems can be notoriously hard to debug.
A developer has to manually analyze the complex interactions between the probabilistic program, its
data inputs, and the inference algorithm implemented by the PP system, which is non-trivial. Program
Reduction techniques, commonly used in compiler testing, reduce the size of bug-revealing programs
so that the reduced program still reproduces the same bug. This reduction makes debugging easier.
However, existing program reduction techniques are inefficient when applied to PP: they can produce
illegal or semantically invalid programs because they only consider syntactic information. I devel-
oped Storm [FSE19] — the first automated approach for efficiently reducing bug-revealing
probabilistic programs while triggering the same failure in the PP system. Unlike existing ap-
proaches, Storm leverages various program analyses and probabilistic reasoning to reduce bug-revealing
probabilistic programs efficiently. I evaluated Storm on 47 bug-revealing probabilistic programs. The
reduced programs had up to 58% less code and 96% less data and required 99% fewer inference itera-
tions to reproduce the same bugs. The reduced programs run up to 126x faster, significantly speeding
up debugging and saving development time.

Debugging Convergence Problems in Probabilistic Programs. Users of probabilistic programs
often make programming errors (e.g., using improper distributions) that lead to the non-convergence of
inference algorithms. Convergence is necessary for successful inference because non-convergence often
causes inaccurate (or wrong) results. The convergence of inference algorithms such as MCMC, although
guaranteed in the limit, is hard to predict ahead of time (i.e., without executing the program). How-
ever, predicting convergence requires a deep understanding of the complicated interaction between the
probabilistic program and the inference algorithm. Users often do not have such expertise. To address
this problem, I developed SixthSense [FASE22] — the first data-driven approach to predict
whether a probabilistic program will converge in a limited number of steps. SixthSense en-
codes the structure of probabilistic programs into a vector representation and trains an ML classifier to
learn program features that lead to convergence or non-convergence. SixthSense obtained an average
accuracy of over 78% in predicting convergence for a broad class of probabilistic programs using only
static program features and 83% when combining dynamic features.

2 Testing Machine Learning Libraries

Testing the correctness of Machine Learning libraries — including those that support Deep Learning,
Reinforcement Learning, Probabilistic Programming, and Classical ML — is challenging due to the use of
stochastic algorithms and the lack of accuracy specifications. To test such libraries, developers typically
write regression tests that are run after every code change to check that the change does not break existing
functionality. However, when writing regression tests, developers often do not adequately account for
the randomness of the algorithm under test and resort to non-systematic techniques, which reduces the
reliability, efficiency, and effectiveness of the tests. To address these problems, I have developed the
first set of systematic techniques, grounded in statistical reasoning and probability theory,
that improve the quality of regression tests in Machine Learning libraries. My research focuses



on three aspects: 1) improving test reliability by detecting and fixing flaky tests, 2) making regression
tests cost-efficient, and 3) improving the fault-detection effectiveness of tests.

Detecting and Fixing Flaky Tests in Machine Learning Libraries. In ML libraries, many
regression tests for code involving stochastic computations are flaky — they randomly pass or fail on the
same code version. Test flakiness is undesirable since it makes the test unreliable and wastes developer
time investigating spurious failures. My empirical study [ISSTA20] revelated that the majority of flaky
tests in this domain (60%) are tests that involve stochastic computations. To tackle the problem of
flaky tests, I developed FLASH [ISSTA20] — the first technique for automatically detecting
tests that are flaky due to stochastic computations. The key idea behind FLASH is to use
statistical convergence testing to model the distribution of values of the variable in the test assertion and
identify potential flaky tests. FLASH detected 11 new flaky tests in 7 out of 20 ML libraries that we
evaluated. Common wisdom might suggest mitigating such flakiness by fizing the seed in random number
generators. However, my work has shown that this approach can often hide subtle bugs [ICST22]. As a
more systematic approach, I developed the first technique to fix such flaky tests, FLEX [FSE21],
which adapts Extreme Value Theory from statistics to reliably model the tail distribution of the variable
in the test assertion and estimate a new assertion bound that minimizes flakiness to a desirable level.
Using FLEX, T fixed 28 flaky tests across 17 ML libraries.

Making Regression Tests in Machine Learning Libraries Cost-Efficient. To avoid flakiness,
developers of ML libraries are often overtly conservative in their tests — they execute the stochastic
algorithm under test for more iterations than necessary to ensure that the outputs are in the expected
ranges. Naturally, such tests are slow. To tackle this challenge, I developed TERA [ISSTA21] —
the first automated technique for reducing the execution cost of regression tests in ML
libraries without making them flaky. My central insight in TERA is that we can enable faster and
highly reliable test execution by relaxing the desired passing probability of the test. TERA formulates
this problem of trade-off space exploration between test execution time and its passing probability as
an optimization problem over the space of algorithm hyper-parameters. TERA then leverages Bayesian
optimization to find the optimal hyper-parameter values that minimize test execution time while ensuring
that the passing probability is above a developer-specified threshold. Overall, I obtained a speedup of
2.23x across 160 tests in 15 ML libraries using TERA.

Improving Fault Detection Effectiveness of Regression Tests. Because developers want to avoid
flaky failures, they often set loose assertion bounds in tests. This practice reduces the fault-detection
effectiveness of the test. I developed FASER [ICSE23| — the first systematic technique that
maximizes the fault-detection effectiveness of the test without making it unacceptably flaky.
FASER frames this problem as an optimization problem with two competing objectives: 1) maximizing
fault-detection effectiveness and 2) minimizing flakiness by varying the assertion bound. Since it is not
feasible to specify these objectives analytically, FASER uses mutation testing to estimate test effectiveness
and various concentration inequalities from probability theory to estimate test flakiness. Using FASER,
I improved the effectiveness of 23 tests across 12 ML libraries by more than 15% while limiting flakiness.

3 Other Research Contributions

In addition to my primary research, I made several contributions in probabilistic programming and
program analysis.

Symbolic Inference for Probabilistic Programs. I contributed to developing AQUA [ATVAZ21]
— a novel symbolic inference algorithm for probabilistic programs. The central idea in AQUA is to
approximate and estimate the posterior distribution using a novel quantized symbolic representation. The
main benefit of AQUA is that it can provide more accurate and faster results than approximate inference
algorithms like MCMC and supports programs that are out of reach of exact inference algorithms. AQUA
provides precise results on a diverse set of 24 benchmark probabilistic programs.

Improving Security of Javascript Applications by Inferring Taint Specifications. Taint analy-
sis is a powerful static analysis technique for exposing violations of security policies. However, taint anal-
ysis requires taint specifications — program points controlling sensitive data flow. Such specifications are
hard to infer automatically. I developed InspectJS [ICSE-SEIP22] — a novel Machine Learning-based ap-
proach to infer taint specifications for JavaScript automatically. InspectJS found several new taint spec-
ifications in real-world JavaScript projects that were missing in GitHub’s CodeQL analysis framework.



4 Future Work

As the influence and impact of Machine Learning-based systems continue to gain momentum in society,
I believe that the principal themes of my research will only grow in importance and applicability. The
recently introduced White House’s Al Bill of Rights underscores the importance of “extensive testing” in
developing Machine Learning-based systems to avoid undue harm to society. Further, there is growing
interest in this area both from industry and federal funding programs (e.g., NSF DASS and NSF SHF)
acknowledging the importance of testing ML-based systems.

In the near term, I will focus on tackling the challenges in testing the ever-expanding ML toolset,
including tools such as deep learning compilers and ML libraries. In the long term, my goal is to
adopt an interdisciplinary approach by synergistically combining cutting-edge techniques from software
engineering, programming languages, statistics, and machine learning to solve the challenges in testing
emerging domains such as deep probabilistic programming and ML-driven hybrid systems such as robots
and autonomous cars. These domains exhibit the common theme of non-determinism in various forms,
which T am uniquely positioned to tackle due to my research experience.

Effective Testing and Debugging of Deep Learning Compilers. Deep Learning (DL) compilers
automate the compilation and optimization of DL models for heterogenous hardware such as high-end
GPUs, FPGAs, and edge devices. DL compilers, like any other software, are prone to bugs. Such bugs
can often lead to silent failures in the form of inaccurate results or poor performance, which makes testing
important. First, I will develop a comprehensive and cost-efficient testing approach for DL compilers to
detect such hard-to-find bugs. My early efforts in this dimension have shown promising results [FAL-
CON*]. Second, I will develop automated bug localization and repair techniques to debug such failures.

Rethinking Regression Testing for ML libraries. While writing regression tests for ML li-
braries, developers manually choose various configurations (like algorithm hyper-parameters and assertion
bounds), often leading to problems like flakiness or reduced fault-detection effectiveness. I envision a test
generation approach that, given a test specification, can automatically make these choices while jointly
optimizing for one or more goals (such as maximizing fault-detection effectiveness or coverage). I will
combine insights from my work on regression tests in ML libraries with novel approaches to determine
optimal test configurations from the large combinatorial space of choices.

Testing Deep Probabilistic Programs. Deep probabilistic programming is a promising programming
system that enables composing deep learning models with probabilistic programs. Such programming
systems allow users to effectively combine the benefits of both domains, such as scalability to billions of
parameters, Al accelerators, interpretability, and reasoning about uncertainty. While the domain is still
in its infancy, it will require novel testing approaches to enable robust development of the programming
platforms. My experience with probabilistic programming and deep learning has helped me gain unique
insights to develop novel solutions for this domain. I will investigate this domain’s unique challenges and
programming errors and develop automated testing approaches.

Improving Reliability of Hybrid Systems with Machine Learning Components. With the
proliferation of powerful Machine Learning models, various real-world systems in emerging domains such
as autonomous driving, AR/VR, and robotics have started integrating ML-based components. Testing
such hybrid systems present challenges that are beyond current testing approaches. First, a testing
approach should account for how the ML-based components interact with other ML- and non-ML based
components, especially in the presence of non-determinism. Second, the business logic of the ML-based
components is often learned from data and hence lacks interpretability. Therefore, we require a test oracle
that can reason about the correctness of the component in the context of the entire system. To tackle
these challenges, I will develop a testing approach that 1) reasons about component- and system-level non-
determinism by modeling their behavior using statistical methods, 2) captures component interactions
using probabilistic models, 3) generates test inputs that trigger diverse component behaviors and their
interactions, and 4) checks for correctness by adapting system-level specifications to the hybrid setting.
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